LRFD Piling

Effective March 15, 2006 Revised July 20, 2006

Section 512 from the IDOT Standard Specifications for Road and Bridge Construction, Adopted January 1, 2002 and all Supplemental Specifications and Recurring Special Provisions pertaining to Section 512 shall be replaced with the following:

SECTION 512. PILING

- **512.01 Description.** This work shall consist of furnishing and driving piles.
- **512.02 Materials.** Materials shall be according to the following.

	Item	Article/Section
(a)	Timber Piling	1007.08
	Preservative Treatment	
(c)	Portland Cement Concrete	1020
(d)	Reinforcement Bars and Fabric	1006.10
(e)	Structural Steel	1006.04
(f)	Paint Materials and Mixed Paints	1008.01 - 1008.23
(g)	Prestressing Steel Strand	1006.10
(h)	Metal Shell and Sheet Piling	1006.05
(j)	Hardware	1006.17

CONSTRUCTION REQUIREMENTS

512.03 Precast Concrete and Precast, Prestressed Concrete Piles. Precast and precast, prestressed piles shall be constructed according to the requirements of Section 504, except as specified.

(a) Precast Concrete Piles. Precast concrete piles may be driven when the tests show that the concrete has attained a compressive strength of not less than 4500 psi (31,000 kPa), or a flexural strength of not less than 750 psi (5,200 kPa), but not less than seven days from date of casting.

After removal of the side forms, the entire pile shall be supported and not subjected to any handling stresses until the concrete has attained a flexural strength of at least 650 or 3500 psi (4,500 or 24,000 kPa) compressive strength.

Each pile shall be cured according to Article 1020.13 until the concrete has attained the strength required at the time of driving, but for a period of not less than seven days from the date of casting, except as stated below. Steam curing also will be permitted, provided that the method and its details meet the approval of the Engineer. During cold weather construction and when steam curing is not used, the concrete shall be protected according to Article 1020.13(e). The curing and protection shall begin as soon as each

group of piles has been cast. However, if the forms are to be removed on the day following the casting of the piles, the application of the protective covering may be deferred until the forms are removed unless the gain in strength will be unduly retarded thereby. Permission for removal of the protective covering after it has been applied, for the purpose of removing the forms, may be granted by the Engineer if this does not result in undue cooling of the concrete, but the covering shall be replaced after the shortest possible interval of time.

The maximum allowable deviation of the longitudinal axis from a straight line drawn from the center of the pile tip to the center of the pile top shall not exceed 1/4 in. (5 mm) per 25 ft (6.5 m).

(b) Precast, Prestressed Concrete Piles. Precast, prestressed concrete piles shall not be driven until the concrete has attained a compressive strength of not less than 5000 psi (35,000 kPa), but in no case less than three days from the date of casting.

The prestressing strand shall have a minimum breaking strength for 7/16 in. (11 mm) strand of 31,000 lb (138 kN) and a minimum load at one percent extension of 26,350 lb (117 kN) with an initial load of 3,100 lb (14 kN). The prestressing load applied to the strand shall be 21,700 lb (96.5 kN).

For 1/2 in. (12.7 mm) strand, the prestressing strand shall have a minimum breaking strength of 41,300 lb (184 kN) and a minimum load of 4,130 lb (18 kN). The prestressing load applied to the strand shall be 28,900 lb (128 kN).

Each reel of strand and all samples furnished to the Engineer for testing shall bear a tag identifying the strand as extra high-strength.

Each end of the piles shall have extra reinforcement as shown on the plans. All prestressing strands shall be ground flush with each end of the pile. The piles shall be constructed to a tolerance of 0 to +1/2 in. (+12 mm) of the cross sectional dimensions shown on the plans. The tolerance from a straight line along the longitudinal axis shall be the same as specified for precast concrete piles. Splicing of precast concrete or precast, prestressed concrete piles for the purpose of driving additional length will not be allowed.

- (c) Splices. Splicing of Precast Concrete or Precast Prestressed Concrete Piles for the purposes of driving additional length will not be allowed.
- (d) Extensions. Extensions on precast concrete or precast, prestressed concrete piles shall be avoided; but when necessary, they shall be made as shown on the plans.

512.04 Metal Shell Piles. Metal shell piles shall consist of a steel shell which is driven into place and filled with concrete. The walls of all shells shall be of sufficient thickness, but not less than the minimum specified, to permit driving without distortion or damage.

(a) Splicing. Splicing of metal shell piles shall be as follows.

- (1) Planned Splices. Planned field or shop splices may be used provided the minimum length of each segment is at least 20 ft (6 m).
- (2) Unplanned Splices. Unplanned field splices shall be used as required to furnish lengths beyond those specified in Article 512.16. The length of additional segments shall be a minimum of 10 ft (3 m) unless otherwise specified by the Engineer.

All splices shall be accomplished by a complete joint penetration (CJP) weld or a commercial drive splice with Department approved commercial splicer welding detail. Welder qualification and certification will be required for all splicing according to Article 512.07.

- (b) Driving. Whenever practicable, all piles for any one bent, pier, or abutment shall be completely driven before any concrete is placed in the shells. If this is impracticable, driving of additional piles within 15 ft (4.5 m) shall be deferred until the concrete in all shells within this zone has been in place for at least 24 hours from the time placing is completed.
- (c) Inspection. The Contractor shall have a suitable light available at all times for illuminating the entire interior length of the shells. Driven shells shall be watertight and free of bends, kinks, or other deformations that would impair the strength or efficiency of the completed pile.

If the shells are not filled with concrete shortly after being driven, the tops of the shells shall be temporarily sealed.

- (d) Reinforcement. Reinforcement shall be used inside the shells as shown on the plans. Reinforcement shall be rigidly fastened together and lowered into the shell before the concrete is placed. Spurs or spacers shall be used to ensure the specified clearance for the bars.
- (e) Filling. Prior to filling with Class SI concrete, the metal shells shall be again inspected. Any water or foreign substances found within shall be removed. During filling, the top 10 ft (3 m) of concrete in the piles shall be consolidated by internal vibration. The concrete shall be protected against low temperatures as required in Article 1020.13.

512.05 Steel Piles. Steel piles shall consist of structural steel shapes such as H-piles or other sections indicated on the plans.

- (a) Splicing. Splicing of steel piles shall be as follows.
 - (1) Planned Splices. Planned field or shop splices may be used provided the minimum length of each segment is at least 20 ft (6 m).
 - (2) Unplanned Splices. Unplanned field splices shall be used as required to furnish lengths beyond those specified in Article 512.16. The length of additional segments shall be a minimum of 10 ft (3 m) unless otherwise specified by the Engineer.

All splices shall be accomplished by a complete joint penetration (CJP) weld of the entire cross-section, or by the Department's standard steel pile field splice, or by the use of a commercial splicer with a Department approved commercial splicer welding detail. Welder qualification and certification will be required for all splices according to Article 512.07.

(b) Painting and Field Connections for Trestle Bents. Before being driven or placed, all steel piles, caps, splices, and bracing members in trestle bents shall be shop painted with inorganic zinc-rich primer. When specified, after the piles are driven and all bracing members, concrete caps, and encasement are in place, all exposed steel shall be given one complete coat of field paint. All painting shall be according to Section 506.

When piles are not driven sufficiently exact to line up with bracing members, fills or shims shall be furnished and placed to secure proper attachment of the bracing.

(c) Pile Shoes. When specified, steel piles shall be fitted with pile shoes. Pile shoes shall be cast in one piece steel conforming to either ASTM A 148 Grade 90-60 (grade 620-415) or AASHTO M 103 (M 103M) Grade 65-35 (Grade 450-240) and shall be fastened to the piles using 5/16 in. (8 mm) continuous fillet weld along the flange contact areas. They shall have sufficient flange and continuous web vertical back-ups to assure proper alignment and fitting to the pile. The soil or rock bearing surfaces of the shoes shall be sloped downward towards the web a minimum of 15 degrees but not to exceed 45 degrees to the horizontal under the flanges. The sloped surfaces of the shoes shall terminate in a manner to form a flat surface not exceeding one third of the flange width. The minimum weight (mass) of the pile shoes shall be 35 percent of the proposed pile weight (mass), per 1.0 ft (0.3 m) for AASHTO M 103 (M 103M) steel and 30 percent for ASTM A 148 steel.

512.06 Timber Piles. Full length piles shall be used and no planned splices will be allowed. When unplanned splices are required to furnish lengths beyond those specified in Article 512.16, they shall be of the butt joint type and the added piece shall conform closely in diameter to the main pile at the point of splice. The pile shall be sawed square and the butt joints shall bear evenly over the entire surface. The splices shall be made by the use of at least four steel plates or a metal pipe sleeve. The plates shall be at least 4 ft (1.2 m) long, 3 1/2 in. (90 mm) wide and 3/8 in. (10 mm) thick and each plate shall be bolted to the pile with not less than two 3/4 in. (M20) bolts both above and below the joint. Pipe sleeves shall be standard steel pipe, at least 3 ft (900 mm) long and shall be fastened with not less than three 5/8 in. (M16) lag screws, 5 in. (125 mm) long, both above and below the joint. All metal used for splicing piles shall be galvanized according to AASHTO M 111.

Before the splice is assembled, if the joint is to be above low ground water line, all sawed surfaces and holes in piles shall be treated according to Article 1007.12.

512.07 Welding. Welding shall be according to the applicable requirements of Article 505.04(q), except for the following.

Welders shall be qualified according to either AWS D1.1 or D1.5 Code, except the macroetch specimen requirement of the "Qualification Test for Fillet Welds Only (Option 1)" will be waived. Welding procedures are considered prequalified if consumables in Table 4.1 of the D1.5 BWC and low hydrogen practices of Section 4 in the BWC are employed. Submittal of weld procedure specifications (WPSs) for the Engineer's approval is not required, but the welder must have written WPSs for the procedures employed, showing consumables, variables (amps, volts, etc.), joint configuration, surface preparation and preheat. Submerged arc welding (SAW) is not mandatory for CJP welds in flanges and/or webs of steel piles. Non-destructive testing of pile splices by the Contractor will not be required unless visual inspection by the Engineer indicates significant anomalies.

512.08 Storage and Handling of Piles. The method of storing and handling piles shall protect them from damage.

- (a) Timber Piles. Timber piles shall be stored at the site of the work according to Article 1007.12(f) and handled according to Articles 507.05 and 1007.12(f).
- (b) Precast Concrete and Precast, Prestressed Concrete Piles. Removal of forms, curing, storing, transporting, and handling precast and precast, prestressed concrete piles shall be done in such a manner as to avoid excessive bending stresses, cracking, spalling or other injurious effects. In general, precast concrete piles shall be lifted by suitable devices attached to the pile at not less than two points for piles up to 45 ft (14 m) long, and not less than three points for piles over 45 ft (14 m) long. Precast, prestressed concrete piles shall be lifted by suitable devices and supported during storage or transportation at not less than two points for piles up to 65 ft (20 m) long and not less than three points for piles over 65 ft (20 m) long. The locations of the points of support shall be as shown on the precast shop plans.

The piles shall be lifted by a bridle attached to the pile or special embedded or attached lifting devices. Unless special lifting devices are attached for lifting, the pickup points shall be plainly marked on all piles before removal from the casting bed and all lifting shall be done at these points. The method of handling precast concrete piles shall not induce stresses in the reinforcement in excess of 12,000 psi (80,000 kPa), using a factor of safety of two to account for impact and shock. The method of handling precast prestressed concrete piles shall not induce tensile stresses in the concrete in excess of 210 psi (1400 kPa), using a factor of safety of two to account for impact and shock.

- (c) Steel Piles. The handling and storing of steel piles shall be according to Article 505.08(c).
- (d) Metal Shell Piles. Metal shell piles shall be stored off the ground with sufficient cribbing to prevent bending or distortion of the pile and to prevent dirt, water, or other foreign material from entering the metal shell.

512.09 Preparation for Driving. Piles shall not be driven until after the excavation or embankment near piles for the footings, abutments, piers, or channel

construction is completed. Any material forced up between the piles shall be removed to the correct elevation before concrete in the foundation is placed.

- (a) Pointing Timber Piles. When shown on the plans, the piles shall be shod with metal shoes of a design satisfactory to the Engineer. The points of the piles shall be shaped to secure an even and uniform bearing on the shoes.
- (b) Precast and Precast, Prestressed Concrete Piles. All piles shall be saturated with water, for the entire length of the pile, at least six hours prior to driving.
- (c) Precoring Through Embankment or Dense Soils. When shown on the plans, holes as detailed shall be precored for piles which are to be driven through new embankment or dense soils. If oversize holes are drilled, the void space outside of the pile shall be filled with dry, loose sand.

512.10 Driving Equipment. The equipment for driving piles shall be according to the following.

(a) Hammers. Piles shall be driven with an impact hammer such as a drop, steam/air, hydraulic, or diesel. The driving system selected by the Contractor shall not result in damage to the pile. The impact hammer shall be capable of being operated at an energy which will maintain a pile penetration rate between 2 and 10 blows per 1 in. (25 mm) when the nominal driven bearing of the pile approaches the nominal required bearing.

For hammer selection purposes, the minimum and maximum hammer energy necessary to achieve these penetration rates may be estimated as follows.

$E \ge 0.082 \text{ x } [R_N + 100]^2$	(English)
$E \le 0.193 \text{ x } [R_N + 100]^2$	(English)
$E \ge 0.005 \text{ x } [R_N + 550]^2$	(Metric)
$E \le 0.012 \times [R_N + 550]^2$	(Metric)

Where:

 R_N = Nominal required bearing in kips (kN)

E = Energy developed by the hammer per blow in ft lb (J)

When steel piles are driven to hard rock, the penetration resistance and hammer energy may both abruptly increase, making it difficult to calculate the penetration rate and increase concern for pile tip damage. Under these conditions, the Contractor shall reduce hammer energy and/or calculate the penetration rate over a reduced penetration increment (less than 1 in. (25 mm)) to assure that the pile has obtained the nominal required bearing and has not sustained damage.

Air/Steam hammers may be single or double acting but must have a total weight of striking parts of not less than one-third of the weight (mass) of the

pile and drive cap and in no case shall the striking part have a weight (mass) less than 2.8 kips (1270 kg). The equipment supplied with the hammer shall maintain the pressure at the hammer that is specified by the manufacturer. The Contractor shall provide the Engineer with the hammer specifications so that the energy developed by the hammer with each blow may be determined.

Diesel hammers may be open-ended or closed-ended. Open-end single acting diesel hammers shall be equipped with either a device to measure ram impact velocity or speed of operation (with the necessary correlation charts) unless the stroke height can be directly observed to determine the energy developed by the hammer with each blow. Closed-end double acting diesel hammers shall be equipped with a bounce chamber pressure gauge that is easily readable and the Contractor shall provide a correlation chart and hammer data to determine the energy developed by the hammer with each blow.

Drop hammers shall not be used for driving precast piles or piles with a nominal required bearing exceeding 60 tons (533 kN). The hammer data shall be provided to the Engineer and the minimum ram weight (mass) of the hammer ram is 2000 lb (905 kg). The fall of the ram shall be regulated so as to avoid injury to the piles, but shall in no case exceed 15 ft (4.6 m). In no case shall the ram weight (mass) be less than the combined weight (mass) of the pile and drive cap.

Hydraulic hammers shall be equipped with an energy readout device and the Contractor shall furnish wave equation analysis to aid in the determination of the adequacy of the hammer and indicate the nominal driven bearing of the pile. The formula provided in Article 512.14 may not be used for these calculations.

Vibratory hammers may only be used to install piles when approved by the Engineer. Piles installed with vibratory hammers shall be further driven with an impact hammer until the nominal driven bearing is verified to be equal to or greater than the nominal required bearing.

(b) Drive Heads. The heads of all piles shall be protected by a pile drive head also referred to as a helmet or cap during driving. The drive head shall consist of a cast or structural steel helmet capable of holding the axis of the pile in line with the axis of the hammer.

The heads of metal shell piles shall be protected by a combination driving head and pilot capable of distributing the hammer blow uniformly across the metal shell cross section and maintaining the alignment of the pile.

(c) Hammer and Pile Cushions. The heads of timber, precast concrete, and precast, prestressed concrete piles shall be protected by a pile cushion between the pile and driving head during driving to prevent damage to the pile. The minimum pile cushion thickness prior to driving shall be 3 in. (75 mm). A new cushion shall be provided if, during driving, the cushion is either compressed to less than 60 percent of the original thickness or it begins to burn. Hammers which require a hammer cushion shall be

inspected prior to driving and after each 50 hours of operation there after. The hammer cushion shall be replaced when there is a reduction in thickness exceeding 25 percent; or for air/steam hammers, when the reduction in thickness exceeds the manufacturer's limitations.

- (d) Leads. Pile leads shall be used to maintain the alignment of the pile and hammer to assure concentric impact for each blow. Swinging leads shall be set or toed in the ground prior to the start of driving. The design of the leads shall accommodate the length of pile segments, the hammer, and other required equipment and shall be capable of maintaining the alignment of the pile during driving within the tolerances specified.
- (e) Followers. The driving of piles with followers shall be done only with the written permission of the Engineer. Followers shall be fabricated to bear evenly and concentrically on the pile as well as maintain proper alignment with the pile to efficiently deliver the energy from the hammer to the pile. The first pile in every group of ten shall be driven without a follower, by using a longer pile if necessary, and shall be used, to determine the average nominal driven bearing of the other piles in the group.
- (f) Jets. Water and air jets may be used when approved by the Engineer. The jets shall have the capacity to erode the material adjacent to the pile without causing damage to the site or affecting vertical or lateral capacity of adjacent piles. After the use of jets has been discontinued within the substructure area, the piles shall be further driven with an impact hammer until the nominal driven bearing is verified to be equal to or greater than the nominal required bearing.
- **512.11 Penetration of Piles.** Piles shall be installed to a penetration that satisfies all of the following.
 - (a) The nominal driven bearing, as determined by the formula in Article 512.14, is not less than the nominal required bearing shown on the plans.
 - (b) The pile tip elevation is at or below the minimum tip elevation shown on the plans. In cases where no minimum tip elevation is provided, the piles shall be driven to a penetration of at least 10 ft (3 m) below the bottom of footing or below undisturbed earth, whichever is greater.

When piles fail to achieve nominal driven bearings in excess of the nominal required bearing after driving the full furnished lengths, but are within 85 percent of nominal bearing required, these piles shall be left for a minimum of 24 hours to allow for soil setup and retesting before splicing and driving additional length. After the waiting period has passed, the pile shall be redriven to check the gain in nominal driven bearing upon soil setup. The soil setup nominal driven bearing shall be based on the number of redriving blows necessary to drive the pile an additional 3 in. (75 mm) using a hammer that has been warmed up by applying at least 20 blows to another pile. These piles will be accepted if they exhibit a nominal driven bearing larger than nominal required bearing.

512.12 Tolerances in Driving. Piles shall be driven with a variation from the vertical or required batter alignment of not more than 1/4 in./ft (20 mm/m). Piles shall

be driven to an accuracy where no portion of the visible pile is out of plan position by more than 6 in. (150 mm) in any direction, provided that no design modification is required to accommodate the pile location and where forcing them into tolerance after driving would not result in injury to the piles.

512.13 Cutoffs. After driving piles, they shall be cut off perpendicular to their longitudinal axis at the elevations shown on the plans. The remaining portion of the piles shall be free of damage or bruising. All debris shall be removed and disposed of from around the piles.

The heads of all treated timber piles, when not encased in concrete, shall be field treated after cutoff according to Article 1007.12. Each pile head shall then be covered with a sheet of galvanized steel, not lighter than 24 gage (0.701 mm) and of sufficient area to project at least 4 in. (100 mm) outside the pile at any point, which shall be bent down over the pile to fit neatly and exclude water in the best possible manner. The edges shall be trimmed neatly and fastened to the pile face with large headed galvanized roofing nails.

The cutoff portions of all piles, including test piles, shall be retained and made available for use in splicing or extending piles, if required, until the pile driving is complete. Upon completion of the work, the cutoffs shall become the property of the Contractor and shall be disposed of.

512.14 Determination of Nominal Driven Bearing. The nominal driven bearing of each pile will be determined by the FHWA modified Gates formula as follows.

$$R_{NDR} = 1.75 \sqrt{E} \ Log (10N_b) - 100$$
 (English)

$$R_{NDB} = 7\sqrt{E} Log (10N_b) - 550$$
 (Metric)

Where:

 R_{NDR} = Nominal driven bearing of the pile in kips (kN)

 N_b = Number of hammer blows per inch (25 mm) of pile penetration

E = Energy developed by the hammer per blow in ft lb (J)

For piles driven on a batter, the value of "E" will be multiplied by the hammer energy reduction coefficient, "U" will be determined as follows.

$$U = \frac{0.25(4-m)}{\left(1+m^2\right)^{0.5}}$$
 for drop hammers

$$U = \frac{0.1(10 - m)}{(1 + m^2)^{0.5}}$$
 for all other hammers

Where:

U = Hammer energy reduction coefficient, less than unity

= Tangent of the angle of batter (i.e. m = 25 = 3/12 for 3H:12V batter)

m = Tangent of the angle of batter (i.e. m = .25 = 3/12 for 3H:12V batter)

The Engineer will determine the value of "E". For drop, single acting air/steam hammers, and open type diesel hammers, the kinetic energy will be used by measuring ram velocity. When measuring ram velocity is not possible, it may be approximated by the potential energy calculated by multiplying the weight (mass) of hammer striking parts by the observed fall or stroke height. For double acting air/steam hammers and closed type diesel hammers, the energy will be calculated by using ram weight (mass) and bounce chamber pressure. The Contractor shall submit hammer literature and correlation charts to aid in determining hammer energy of each blow. In either case, the calculated value of "E" will be further reduced by the hammer energy reduction coefficient "U" prior to being used in the formula to calculate " $R_{\rm NDB}$ " or " $N_{\rm b}$ ".

The preceding formula for piles driven with a drop hammer is applicable only when: the hammer has an unrestricted free fall; the pile head is not broomed, crushed or splintered; there is no appreciable bounce of the hammer after striking the pile; and the penetration is at a uniform or uniformly decreasing rate.

When specified in the contract or when a hydraulic hammer is used, the nominal driven bearing of the piles will be determined by the results of a wave equation analysis. The analysis will take into account the hammer driving system, site specific subsurface data, and project pile geometry to develop driving criteria which will not overstress the pile and correctly indicate its nominal driven bearing.

When specified in the contract, a static pile load test shall be performed on the specified piles of a group to determine their nominal driven bearing. The pile load test shall be performed according to ASTM D 1143. Shop drawings for the design of the load test frame shall be submitted to the Engineer.

512.15 Test Piles. Test piles shall be of the same material and size, satisfy all splicing requirements, and contain any pile shoes as specified for the production piles. Test piles shall be driven with the same equipment as will be used for driving the production piles. The furnished length for test piles shall be at least 10 ft (3 m) longer than the estimated length shown on the plans.

Before driving test piles, the excavation or embankment near piles shall be within 2 ft (600 mm) of the proposed grade of the footing, pier, abutment or channel.

Test piles shall be driven to a nominal driven bearing 10 percent greater than the nominal required bearing shown on the plans. The Engineer may stop the driving of any test pile at tip penetrations exceeding 10 ft. (3 m) beyond the estimated length to check for pile setup according to Article 512.11. After any retesting, the Contractor shall recommence test pile driving, providing piling, splices, and any retests until the nominal driven bearing during driving reaches 10 percent more than the nominal required bearing or the Engineer stops the driving due to having sufficient data to provide the itemized list of furnished lengths.

Test piles driven in production pile locations that are incorporated into the structure shall be cut off as permanent piles. Test piles not driven in a production location shall be cut off or pulled, as directed by the Engineer.

- **512.16 Length of Piles.** The Contractor shall furnish pile lengths according to a written itemized list provided by the Engineer. Should the Contractor elect to preorder piles prior to being provided with the itemized list, it shall be done at his/her own risk. The itemized list of furnished lengths will be based on the Engineer's evaluation of the test pile results, the soil boring data, and the estimated pile lengths on the plans. If the plans do not require a test pile, the itemized list of furnished lengths shall be as estimated on the plans. The length of test piles shall be according to Article 512.15.
- **512.17 Concrete Encasement.** When individual reinforced concrete encasement of steel piles and metal shell piles is shown on the plans, this work shall be according to Section 503 and shall include the furnishing and placing of the reinforcement required for the encasement and any excavation necessary to construct it.
- **512.18 Method of Measurement.** Furnishing piles will be measured for payment in feet (meters). Measurement will include the total length of piles delivered to the site of the work, according to the itemized list furnished by the Engineer, and any additional lengths delivered for splicing as ordered by the Engineer. Measurements will be made to the nearest 0.1 ft (0.03 m).

Driving piles will be measured for payment in feet (meters). Measurement will include the total length of piles subtracting cutoffs. For precast concrete and precast, prestressed concrete piles, this length will not include extensions or the portion of the pile cutoff to make the extension. Measurements will be made to the nearest 0.1 ft (0.03 m).

Concrete encasement of piles will be measured for payment in place and the volume computed in cubic yards (cubic meters). The dimensions used will not exceed those shown on the plans or ordered in writing by the Engineer. Increased quantities from the omission of forms for footings will not be measured for payment. Deductions will be made for the volume of piling, except for steel H pile, encased in the concrete. No deduction will be made for the volume of concrete displaced by steel reinforcement.

512.19 Basis of Payment. This work will be paid for as follows.

- (a) Furnishing Piles. This work will be paid for at the contract unit price per foot (meter) for FURNISHING UNTREATED PILES and FURNISHING TREATED PILES, of the length specified; or FURNISHING PRECAST CONCRETE PILES, FURNISHING PRECAST PRESTRESSED CONCRETE PILES, FURNISHING METAL SHELL PILES, and FURNISHING STEEL PILES, of the size specified.
- (b) Driving Piles. This work will be paid for at the contract unit price per foot (meter) for DRIVING PILES.

- (c) Extensions. Extensions for precast concrete and precast, prestressed concrete piles will be paid for according to Article 109.04.
- (d) Unplanned Splices. Unplanned splices for metal shell, steel, and timber piles will be paid for according to Article 109.04.
- (e) Test Piles. Furnishing and driving test piles will be paid for at the contract unit price per each for TEST PILE, of the type specified. Driving test piles beyond the furnished test pile length will be paid for according to Article 109.04.
- (f) Static Pile Load Tests. This work will be paid for at the contract unit price per each for PILE LOAD TEST.
- (g) Pile Shoes. The furnishing and installing of pile shoes, including those for test piles driven in production locations, will be paid for at the contract unit price per each for PILE SHOES.
- (h) Concrete Encasement. This work will be paid for at the contract unit price per cubic yard (cubic meter) for CONCRETE ENCASEMENT.